Synthesis of gem-Difluorocyclopropanes in a Phase-transfer Catalysed System¹

Paweł Bałcerzak, Michał Fedoryński and Andrzej Jończyk*

Department of Chemistry, Technical University (Politechnika), Koszykowa 75, 00-662 Warsaw, Poland

Reaction of CH_2Br_2 with CBr_2F_2 and alkenes **1a–e** in the presence of 60% aqueous KOH and tetrabutylammonium hydrogensulphate as a catalyst affords *gem*-difluorocyclopropanes **2a–e**.

Application of phase-transfer catalysed systems^{2,3} (alkali metal hydroxide and a quaternary onium salt as a catalyst) for generation of dihalogenocarbenes from the corresponding haloforms in the presence of alkenes provides a simple and efficient preparation of *gem*-dihalogenocyclopropanes, with the exception of the *gem*-difluoro-derivatives.⁴ Starting from HCClF₂ and alkenes under the above conditions, the yields of *gem*-difluoro-derivatives did not exceed 10%.²

It is known that :CF₂ is formed by treating HCClF₂ with base *via* elimination of HCl.⁵ This process, if carried out in a phase-transfer catalysed system, affords :CF₂ at the interphase, where it is destroyed owing to a fast reaction with OH⁻ and/or H₂O, rather than reacting with an alkene to form a *gem*-difluorocyclopropane.³

In order to eliminate these undesired reactions, we tried to select suitable conditions which would ensure the generation of :CF₂ inside the organic phase of the two-phase system, where the concentration of OH^- and H_2O is negligible and thus greatly increasing the probability of reaction of this carbene with an alkene. To realize such an approach, our method⁶ for the generation of :CCl₂ from CH_2X_2 (X = Cl, Br) and CCl_4 was adopted.

We found that simply stirring CH₂Br₂, CBr₂F₂ and alkenes **1a–e** with 60% aqueous KOH and tetrabutylammonium hydrogensulphate (TBAHS) as a catalyst afforded the expected *gem*-difluorocyclopropanes **2a–e**, according to the stoichiometry shown in Scheme 1. Under these, unoptimized, conditions the products **2** were formed in moderate to high yields (Table 1).

We presume that the lipophilic ion pair HCBr₂+NBu₄ present in the organic phase undergoes a halogenophilic reaction with CBr₂F₂ to form HCBr₃ and -CBrF₂+NBu₄,

a;
$$R^1 = R^2 = R^3 = R^4 = Me$$

b; $R^1 = R^2 = R^3 = Me$, $R^4 = H$
c; $R^1 = MeO$, $R^2 = Me$, $R^3 = R^4 = H$
d; $R^1 = Ph$, $R^2 = Me$, $R^3 = R^4 = H$
e; $R^1 = Ph$, $R^2 = R^3 = R^4 = H$

Scheme 1

Table 1 Synthesis of gem-difluorocyclopropanes 2 from CH₂Br₂, CBr₂F₂ and alkenes 1 in a phase-transfer catalysed system

Alkene	Producta	Reaction time/h	Yield ^b (%)
1a	2a	27	70¢ (96)
1b	2b	27	60^{c} (80)
1c	2c	11	45c (—)
1d	2d	30	$30^{d}(40)$
1e	2e	60	— (31)

^a All products were characterized by NMR and/or mass spectra.^b In parentheses are GLC yields. c Isolated by fractional distillation. d The reaction mixture was treated with bromine,7 and 2d was isolated by vacuum distillation.

which further splits into :CF₂ and -Br+NBu₄. Alternatively, :CF₂ may be formed via synchronous elimination of two bromine atoms from CBr₂F₂, during its reaction with HCBr₂+NBu₄. The side product of these transformations is CBr₄. In an independent experiment we have shown that it is formed in a halogenophilic reaction of -CBr₃ with CBr₂F₂. The above reaction consumes the second molecule of CBr₂F₂ to generate :CF₂ (via a stepwise or synchronous process). Irrespective of the way: CF₂ is formed, its final reaction with 1 afforded 2 (Scheme 2).

The procedure for preparation of 2 is simple. Alkene 1(0.02)mol), CBr₂F₂ (0.04 mol), CH₂Br₂ (0.04 mol or 0.02 mol for 1a), 60% aqueous KOH (23 g) and TBAHS (0.34 g), were stirred at 18-20 °C for the time indicated in Table 1. The mixtures were worked-up by conventional procedures, and the products 2 were isolated as shown in Table 1.

$$\begin{split} &H_{2}CBr_{2} + 2NaOH + Q^{+}HSO_{4}^{-} \rightarrow H\overline{C}Br_{2}Q^{+} + 2H_{2}O + \\ & Na_{2}SO_{4} \\ &H_{2}CBr_{2} + Q^{+}OH^{-} \rightarrow H\overline{C}Br_{2}Q^{+} + H_{2}O \\ &H\overline{C}Br_{2}Q^{+} + CBr_{2}F_{2} \rightarrow HCBr_{3} + \overline{C}BrF_{2}Q^{+} \\ &\overline{C}BrF_{2}Q^{+} \rightarrow Br^{-}Q^{+} + :CF_{2} \\ &\text{or } H\overline{C}Br_{2}Q^{+} + CBr_{2}F_{2} \rightarrow HCBr_{3} + :CF_{2} + Br^{-}Q^{+} \\ &HCBr_{3} + 2 NaOH + Q^{+}HSO_{4}^{-} \rightarrow \overline{C}Br_{3}Q^{+} + 2H_{2}O + \\ &Na_{2}SO_{4} \\ &HCBr_{3} + Q^{+}OH^{-} \rightarrow \overline{C}Br_{3}Q^{+} + H_{2}O \\ &\overline{C}Br_{3}Q^{+} + CBr_{2}F_{2} \rightarrow CBr_{4} + \overline{C}BrF_{2}Q^{+} \\ &\overline{C}BrF_{2}Q^{+} \rightarrow Br^{-}Q^{+} + :CF_{2} \\ &\text{or } \overline{C}Br_{3}Q^{+} + CBr_{2}F_{2} \rightarrow CBr_{4} + :CF_{2} + Br^{-}Q^{+} \\ &:CF_{2} + 1 \rightarrow 2 \\ &\text{Scheme 2 } Q^{+} = Bu_{4}N^{+} \\ \end{split}$$

To summarize, we have described the first practical method for the synthesis of 2 in a phase-transfer catalysed system.8

We are grateful to Polish Academy of Sciences (grant CPBP No. 01.13) for support.

Received, 26th June 1990; Com. 0/02888F

References

- 1 For Part 171 of the series Reactions of Organic Anions, see Z. Wróbel and M. Makosza, Org. Prep. Proc. Int., 1990, 22, 575.
- 2 E. V. Dehmlow and S. S. Dehmlow, Phase Transfer Catalysis, 2nd edn., Verlag Chemie, Weinheim, 1983.
- 3 M. Makosza and M. Fedoryński, Adv. Catal. 1987, 35, 375.
- 4 E. Dehmlow, in Methoden der Organischen Chemie (Houben-Weyl), ed. M. Regitz, Georg Thieme, Stuttgart, 1989, vol. E19b (part 2), p. 1461.
- 5 J. Hine and P. B. Langford, J. Am. Chem. Soc., 1957, 79, 5497; W. Kimpenhaus and J. Buddrus, Chem. Ber., 1976, 109, 2370.
- 6 A. Jończyk and P. Balcerzak, Tetrahedron Lett., 1989, 30, 4697.
- 7 H. P. Fritz and W. Kornrumpf, Z. Naturforsch., Teil B, 1981, 36, 1375
- 8 P. Balcerzak, M. Fedoryński and A. Jończyk, Polish Pat. Appl. Nr P 282 376, 1989.